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During the total synthesis of the novel cyclic depsipeptide callipeltin A (1), the unit (3S,4R)-3,4-dimethylglutamine, was successfully synthesized
by asymmetric Michael addition and subsequent electrophilic azidation. The key feature of this approach is the generation of three adjacent
stereogenic centers using the same camphorsultam chiral auxiliary.

[

Cyclic depsipeptides have emerged as a very important classallipeltin A (1), we developed a novel chiral auxiliary-

of bioactive compounds from marine natural produchs. controlled asymmetric synthesis of §3IR)-3,4-dimethyl-
1996, Minale et al. reported the isolation of three new cyclic glutamine.
depsipeptides, callipeltins AL}, B (2), and C (Figure 1), We envisioned that therythro-3,4-dimethyl groups of 3,4-

from a shallow water spong€allipeltin sp. These com-  dimethylglutamine would arise from an asymmetric Michael
pounds showed marked activity in cytotoxic assays againstaddition3~>6"to give stereocontrolled substitution atA(

KB and P388 cells and in anti-HIV and antifungal tests. The and C(y), followed by an electrophilic azidatfé® or
structures of the callipeltins were determined by interpretation aminatioi®™ which would generate the-amino group. The

of spectral data, chemical degradation, and evaluation of theretrosynthetic analysis of the protected 3,4-dimethylglutamine
amino acids obtained by acid hydrolysis. In our efforts to (3) is shown in Figure 2.

synthesize a series of bioactive cyclic depsipeptides, we chose Camphor derivatives have been shown to be very useful
callipeltin A (1) as a target due to its interesting anti-HIV auxiliaries in organic synthesisAccording to the procedure
properties and its novel amino acid residugsmethoxy- reported by Capétthe chiral auxiliary (—)-camphorsultam
tyrosine B-OMeTyr), (R 3R49-4-amino-7-guanidino-2,3-  (6) was synthesized in high yield (Scheme 1). Reaction with
dihydroxy heptanoic acid (AGDHE), and $3R)-3,4- trans-crotonyl chloride provided compourt® which was
dimethyli-glutamine. En route to a total synthesis of
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§ X-ray Crystallography Facilities, Department of Chemistry. D. Helv. Chim. Actal982,65, 1637—1654. (c) Kawasaki, H.; Tomioka,
(2) Ireland, C. M.; Molinski, T. F.; Roll, D. M.; Zabriskie, T. M.; McKee, K.; Koga, K. Tetrahedron Lett1985,25, 3031—3034. (d) Yamaguchi, M.;

T. C.; Swersey, J. C.; Foster, M. P. Natural Product Peptides from Marine Hasebe, K.; Tanaka, S.; Minami, Tetrahedron Lett1986,27, 959—962.

Organisms. IrBiorganic Marine Chemistry; Scheuer, P. J., Ed.; Springer- (4) (a) Heathcock, C. H.; Henderson, M. A.; Oare, D. A.; Sanner, M. A.

Verlag: Berlin Heidelberg, 1989; pp-46. J. Org. Chem1985,50, 3019. (b) Oare, D. A.; Henderson, M. A.; Sanner,
(2) (a) Zampella, A.; Valeria D’Auria, M.; Gomez Paloma, L.; Casapullo, M. A.; Heathcock, C. HJ. Org. Chem1990,55, 132—157.

A.; Minale, L.; Debitus, C.; Henin, YJ. Am. Chem. S04996 118 6202— (5) (a) Rossiter, B. E.; Swingle, N. MChem. Re»1992,92, 771—806

6209. (b) Valeria D'Auria, M.; Zampella, A.; Gomez Paloma, L.; Minale, and references therein. (b) Oppolzer, W.; Poli,T8trahedron Lett1986,

L. Tetrahedron1996,52, 9589—9596. 27, 4717—-4720.

10.1021/0l006679t CCC: $19.00  © 2000 American Chemical Society
Published on Web 12/02/2000



Scheme 1

OH

L-Thi

' (o] transcrotonyl
NH I SOCl, NaBH,, chloride, NaH,
2 NH;, /NH toluene
HN \\\\v\ l 4-dmxane Mg?g/ H,0 sG, 85%
o) D-Arg n NH, S0;- OH one pot 83%
H,NOC
\\\\\\
o
L-MeAla /// Me \)J\
’ Y\/ Nan
LDA,THF
MeO 95%
"' LMeGln
9 minor
Xi= N-s major : minor = 4:1
B-MeOTyr ConH, soz/ 5
NH OH OH 0 - . . .
SR 3R, 4S AGDHE analysis (Figures 3 and 4). The ratio of the major to minor

4 NJ]\N A isomer was 4:1. Unfortunately, the stereochemistry of the
z H H major isomer did not match that of the desired compound.

NH OH

‘\\\\\\
Ty

L-Ala S|
HN i B
~

o
L-diMepyroGlu
~ulQH

[T
Callipeltin A (1) R=A
Callipeltin B 2) R-B

Figure 1. Structures of callipeltin AX) and B @); callipeltin C is

an acyclic callipeltin A.
Figure 3. ORTEP drawing of compouné.

subjected to Michael additi8h*® with the lithium enolate

of dibenzylpropionylamide to afford two diastereomeric
isomers,8 and 9, both with erythro-dimethyl groups. The
stereochemistries of both products were determined by X-ray

Using the same procedutewe synthesized the-)-
camphorsultam (10) (Scheme 2) and treated it wri#ims-
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Figure 2. Retrosynthetic analysis of 3,4-dimethylglutamine.

Major : Minor = 3:1
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Figure 4. ORTEP drawing of compouné. Figure 6. ORTEP drawing of compoung3.

crotonyl chloride to provide compourtL? By employing ~ 1© improve the ratio of the major to minor isomer, we
the same Michael addition protocol, we obtained a 3:1 major PreParedN,N-diisopropylpropionyl amide (Scheme 3), which

to minor isomer ratio for the Michael adducts. Their _

stereochemistries were also determined by X-ray analysis

(Figures 5 and 6). Heathcock and co-workers have thor- Scheme 3
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was treated with LDA and reacted with compoutido give
a 25:1 ratio of major isomer to minor isomer.

In the transition state models shown in Figure 7, with a
large chiral auxiliary X and large R groups, transition state
A is favored over transition state B, according to the
Figure 5. ORTEP drawing of compounti2. Heathcock mode® A bulky amide showerythro-selectivity
as amide enolates are known to prefer the (Z)-f8twie
only observedanti products in our reactions. We presume
oughly investigated the stereochemistry of the Michael {5t the amide enolate approaches the enone at an angle
addition of N,N-disubstituted amides ta,f-unsaturated  gjmilar to the Biirgi—Dunitz trajector§!: The attack from
ketones'? and the formation oénti products was expected.  the Reface of the enone (shown as C) is favored over that
: from the Si face (shown as D) due to the chiral auxiliary.
ol E)a"S, 5, A ton, T, un Chem ST 108 6681 Wihen R s changed ffom benzyl {0 abulker isopropyl group.
1072. (b) Evans, D. A.; Evrard, D. A.; Rychnovsky, S. D.; Friih, T.; the Siface of the enone is more encumbered by the chiral

Whittingham, W. G.; DeVries, K. MTetrahedron Lett1992,33, 1189~ auxiliary, making the enolate attack occur almost exclusively
1192. (c) Evans, D. A.; Britton, T. C.; Dorow, R. L.; Dellaria, J. F., Jr. f heRef

Tetrahedron 988,44, 5525-5540. (d) Gennari, C.; Colombo, L.: Bertolini,  110M the Reface.
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Figure 7. Transition states of Michael addition.

MDS) and 2,4,6-triisopropylbenenesulfonyl azide (trisyl
azide)'? successfully installed the azide in tlheposition

with the desired stereochemistry, which was confirmed in
its X-ray structure (Figure 8). Reduction of the resulting azide
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Figure 8. ORTEP drawing of compounti6.

(16) with SnC},° followed by Boc protection of the resulting
free amine in one pot, afforded compouhd. Hydrolysis
of the chiral auxiliary with LiOH (5 equiv) in THF:kD (2:
1) provided the desired fragme8f with no epimerization
of the a-amino centet?

In summary, we have developed a novel chiral auxiliary-
controlled Michael addition and a subsequent electrophilic
azidation sequence to make an unusual amino acid. It is
noteworthy that three adjacent stereogenic centers were
generated using the same chiral auxiliary.
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