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ABSTRACT

During the total synthesis of the novel cyclic depsipeptide callipeltin A (1), the unit (3S,4R)-3,4-dimethylglutamine, was successfully synthesized
by asymmetric Michael addition and subsequent electrophilic azidation. The key feature of this approach is the generation of three adjacent
stereogenic centers using the same camphorsultam chiral auxiliary.

Cyclic depsipeptides have emerged as a very important class
of bioactive compounds from marine natural products.1 In
1996, Minale et al. reported the isolation of three new cyclic
depsipeptides, callipeltins A (1), B (2), and C2 (Figure 1),
from a shallow water spongeCallipeltin sp. These com-
pounds showed marked activity in cytotoxic assays against
KB and P388 cells and in anti-HIV and antifungal tests. The
structures of the callipeltins were determined by interpretation
of spectral data, chemical degradation, and evaluation of the
amino acids obtained by acid hydrolysis. In our efforts to
synthesize a series of bioactive cyclic depsipeptides, we chose
callipeltin A (1) as a target due to its interesting anti-HIV
properties and its novel amino acid residues:â-methoxy-
tyrosine (â-OMeTyr), (2R,3R,4S)-4-amino-7-guanidino-2,3-
dihydroxy heptanoic acid (AGDHE), and (3S,4R)-3,4-
dimethyl-L-glutamine. En route to a total synthesis of

callipeltin A (1), we developed a novel chiral auxiliary-
controlled asymmetric synthesis of (3S,4R)-3,4-dimethyl-
glutamine.

We envisioned that theerythro-3,4-dimethyl groups of 3,4-
dimethylglutamine would arise from an asymmetric Michael
addition,3-5,6h to give stereocontrolled substitution at C(â)
and C(γ), followed by an electrophilic azidation6a,b or
amination6c-h which would generate theR-amino group. The
retrosynthetic analysis of the protected 3,4-dimethylglutamine
(3) is shown in Figure 2.

Camphor derivatives have been shown to be very useful
auxiliaries in organic synthesis.7 According to the procedure
reported by Capet,8 the chiral auxiliary (-)-camphorsultam
(6) was synthesized in high yield (Scheme 1). Reaction with
trans-crotonyl chloride provided compound7,9 which was
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subjected to Michael addition3d,4b with the lithium enolate
of dibenzylpropionylamide to afford two diastereomeric
isomers,8 and 9, both witherythro-dimethyl groups. The
stereochemistries of both products were determined by X-ray

analysis (Figures 3 and 4). The ratio of the major to minor
isomer was 4:1. Unfortunately, the stereochemistry of the
major isomer did not match that of the desired compound.

Using the same procedure,8 we synthesized the (+)-
camphorsultam (10) (Scheme 2) and treated it withtrans-

Scheme 2

Figure 1. Structures of callipeltin A (1) and B (2); callipeltin C is
an acyclic callipeltin A.

Figure 2. Retrosynthetic analysis of 3,4-dimethylglutamine.

Scheme 1

Figure 3. ORTEP drawing of compound8.
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crotonyl chloride to provide compound11.9 By employing
the same Michael addition protocol, we obtained a 3:1 major
to minor isomer ratio for the Michael adducts. Their
stereochemistries were also determined by X-ray analysis
(Figures 5 and 6). Heathcock and co-workers have thor-

oughly investigated the stereochemistry of the Michael
addition of N,N-disubstituted amides toR,â-unsaturated
ketones,4b and the formation ofanti products was expected.

To improve the ratio of the major to minor isomer, we
preparedN,N-diisopropylpropionyl amide (Scheme 3), which

was treated with LDA and reacted with compound11 to give
a 25:1 ratio of major isomer to minor isomer.

In the transition state models shown in Figure 7, with a
large chiral auxiliary X and large R groups, transition state
A is favored over transition state B, according to the
Heathcock model.4b A bulky amide showserythro-selectivity
as amide enolates are known to prefer the (Z)-form.10 We
only observedanti products in our reactions. We presume
that the amide enolate approaches the enone at an angle
similar to the Bürgi-Dunitz trajectory.4b,11 The attack from
the Re face of the enone (shown as C) is favored over that
from the Si face (shown as D) due to the chiral auxiliary.
When R is changed from benzyl to a bulkier isopropyl group,
the Si face of the enone is more encumbered by the chiral
auxiliary, making the enolate attack occur almost exclusively
from theRe face.

Starting with the major Michael adduct12 (Scheme 4),
electrophilic azidation,6a,b using hexamethyldisilazide (KH-
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Figure 4. ORTEP drawing of compound9.

Figure 5. ORTEP drawing of compound12.

Figure 6. ORTEP drawing of compound13.

Scheme 3
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MDS) and 2,4,6-triisopropylbenenesulfonyl azide (trisyl
azide),12 successfully installed the azide in theR-position
with the desired stereochemistry, which was confirmed in
its X-ray structure (Figure 8). Reduction of the resulting azide

(16) with SnCl2,6b followed by Boc protection of the resulting
free amine in one pot, afforded compound17. Hydrolysis
of the chiral auxiliary with LiOH (5 equiv) in THF:H2O (2:
1) provided the desired fragment3, with no epimerization
of the R-amino center.13

In summary, we have developed a novel chiral auxiliary-
controlled Michael addition and a subsequent electrophilic
azidation sequence to make an unusual amino acid. It is
noteworthy that three adjacent stereogenic centers were
generated using the same chiral auxiliary.
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Figure 7. Transition states of Michael addition.

Scheme 4

Figure 8. ORTEP drawing of compound16.
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